Improving the management of microfinance institutions by using credit scoring models based on Statistical Learning techniques

نویسندگان

  • María-Dolores Cubiles-de-la-Vega
  • Antonio Blanco-Oliver
  • Rafael Pino-Mejías
  • Juan Lara-Rubio
چکیده

A wide range of supervised classification algorithms have been successfully applied for credit scoring in non-microfinance environments according to recent literature. However, credit scoring in the microfinance industry is a relatively recent application, and current research is based, to the best of our knowledge, on classical statistical methods. This lack is surprising since the implementation of credit scoring based on supervised classification algorithms should contribute towards the efficiency of microfinance institutions, thereby improving their competitiveness in an increasingly constrained environment. This paper explores an extensive list of Statistical Learning techniques as microfinance credit scoring tools from an empirical viewpoint. A data set of microcredits belonging to a Peruvian Microfinance Institution is considered, and the following models are applied to decide between default and non-default credits: linear and quadratic discriminant analysis, logistic regression, multilayer perceptron, support vector machines, classification trees, and ensemble methods based on bagging and boosting algorithm. The obtained results suggest the use of a multilayer perceptron trained in the R statistical system with a second order algorithm. Moreover, our findings show that, with the implementation of this MLP-based model, the MFIś misclassification costs could be reduced to 13.7% with respect to the application of other classic models. 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credit Scoring Models for a Tunisian Microfinance Institution: Comparison between Artificial Neural Network and Logistic Regression

This paper compares, for a microfinance institution, the performance of two individual classification models: Logistic Regression (Logit) and Multi-Layer Perceptron Neural Network (MLP), to evaluate the credit risk problem and discriminate good creditors from bad ones. Credit scoring systems are currently in common use by numerous financial institutions worldwide. However, credit scoring using ...

متن کامل

Credit scoring models for the microfinance industry using neural networks: Evidence from Peru

Credit scoring systems are currently in common use by numerous financial institutions worldwide. However, credit scoring with the microfinance industry is a relatively recent application, and no model which employs a non-parametric statistical technique has yet, to the best of our knowledge, been published. This lack is surprising since the implementation of credit scoring should contribute tow...

متن کامل

Credit scoring in banks and financial institutions via data mining techniques: A literature review

This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...

متن کامل

Investigating the missing data effect on credit scoring rule based models: The case of an Iranian bank

Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...

متن کامل

A Proposal of a Microcredit Granting Model for the Microfinance Associations in Tunisia

This article is devoted to look at how the factors micro-loan risks in microfinance are related to the micro-borrowers. In this regard, the present analysis involves the using of a set representative and fundamental variables in our research. The study basically use the socio-economic and socio-demographic features specific to the micro-borrowers, which are expected to affect the repayment dela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013